

Community Microgrid Initiative Update for DRP Tech Workshop, Jan 8 2014

Greg Thomson
Director of Programs
Clean Coalition
415-845-3872 mobile
greg@clean-coalition.org

Community Microgrid Initiative

The Clean Coalition's Community Microgrid Initiative accelerates and scales DRPs, DER optimization, local renewables, and a modern grid in two ways:

- <u>Design</u>: replicable planning methodology based on existing tools:
 - Cyme, validated w/PG&E, vendors,
 CPUC (e.g. for AB-327 DRP)
 - Cost optimization via Integral Analytics
- 2. <u>Deployment</u>: Procurement & Interconnection at scale based on Local Capacity Targets
 - Procurement: wholesale/FIT for key customer segments
 - Interconnection: "Plug-n-Play" deployment at scale

Result: Distributed Energy Resources can deploy at scale in months rather than years.

A massive acceleration of "one rooftop at a time..."

DRP & DER Optimization: Local Is Fundamental

Taken together, local grid characteristics unlock optimal and cost-effective DER portfolios. Used optimally, the distribution grid becomes an asset.

DER Optimization Methodology

Inputs

Data, Utilities:

- Loads, load forecasting
- Network model & circuit map
- Equipment list, upgrade plan, O&M schedule
- Transmission constraints

Data, Other:

- Solar insolation
- Weather forecasting
- DG analysis
- DER specs: storage, DR, etc.

4. Higher Capacity & Cost

- Higher DG level that islands critical services via additional storage and/or local reserves (e.g. CHP)
- Optimize via locations, sizes, types, costs, system deferrals

3. Medium Capacity & Cost

- Target DG level and/or net grid value that adds cost-effective storage, DR, and may require some grid upgrades
- Optimize via locations, sizes, types, costs, system deferrals

2. Lower Capacity & Cost

- Initial DG level using existing voltage regulation (e.g. LTCs) w/ advanced inverters while requiring minimal grid upgrades
- Optimize via locations, sizes, types, costs, system deferrals

1. Baseline Powerflow

- Acquire all data sets, validate data accuracy
- Model existing grid area, including existing DG

Outputs

- Scalable and optimized plan both operationally and financially
- Results validated with utility & tech vendors
- Grid reliability & power quality maintained or improved

Local Capacity Targets Achieve Scale, Lower Costs

- Today's "one-rooftop-at-a-time" approach is both costly and disruptive to the grid
 - Local Capacity Targets achieve scale, lower costs, and operational stability
 - This "Plug-n-Play" method also enables apples-to-apples cost comparisons with centralized generation, which is already at scale

Examples of Local Capacity Targets

Medium Capacity
e.g. 30% of total energy
e.g. 15% of total energy

30 MW

Medium Cost: cost-effective storage, demand response

e.g. 45% of total energy

45 MW

 Higher Cost: island essential services via additional storage, local reserves (e.g. CHP)

Distribution Grid

• Lower Cost: minimal grid upgrades,

advanced inverters

Optimal Locations are Key to Unlocking DER

For example, identifying PV optimal locations via:

- Robust feeder locations: less resistance (lower Ohms) means more capacity for local generation
- Matching load types: e.g. higher loads during daytime means better match for PV

Avoided costs: service transformers, etc.

Feeder map based on resistance (Ohms)

Additional Optimization: "Substation-as-a-System"

Connected feeders enables substation-wide optimizations, such as:

- 1. "Crossfeeding," e.g. over-generation on certain feeders consumed by load on other feeders in the substation area
- 2. Optimizing DER such as storage and demand response across the substation feeders
- 3. Optimizing settings, e.g. load tap changers, across the substation feeders

Results to Date: Lower Capacity & Cost Scenario

In Hunters Point substation area:

- 7 30 MW of new PV added to the substation feeders at optimal locations, equaling 25% of total annual energy
 - 7 20 MW added to select Commercial & Industrial sites matching low resistance locations with higher daytime loads
 - 10 MW added to select Residential sites (multiple dwelling units) matching more robust feeder locations
- No adverse impacts to distribution grid operations
 - No Out-of-Range voltages. Voltage regulation achieved using existing Load Tap Changers (advanced inverters not needed yet).
 - No Backfeeding to Transmission. Some "Crossfeeding" between feeders.

Results, Lower Capacity: Voltages & Major Power Flows, Weekdays (no PV vs. PV)

Voltages in

Range

Feeder "Crossfeeding," no Backfeeding to Transmission

Source [47] ——Bank 1 [51] ——Bank 6 [52] ——Yosemite [96]

10,000

Results, Lower Capacity: Voltages & Major Power Flows, Weekends (no PV vs. PV)

Voltages in Range

Feeder
"Crossfeeding,"
no Backfeeding
to Transmission

End